高级检索

    基于迁移学习的断层识别方法与应用

    Fault detection method and application based on transfer learning

    • 摘要: 基于深度学习的断层识别方法通常需要利用已有断层解释结果作为标签进行网络训练,然而,实际断层解释工作费时、费力,且所获取的解释数据规模往往难以满足深度学习网络训练的需求。因此,目前多采用正演合成数据作为样本标签进行网络训练,再将由正演合成数据训练得到的网络模型直接应用于实际资料的断层识别。不同地区地下构造和岩性存在差异,导致不同地区地震数据特征明显不同,仅由正演合成数据训练的网络模型泛化能力有限,难以适应不同地区地震资料断层识别需求,断层识别效果较差。为克服常规断层识别网络模型低泛化性缺陷,提出了一种采用领域自适应神经网络的迁移学习断层识别方法。在U-Net架构深度学习网络中引入领域判别器,以正演合成数据和实际地震数据作为网络输入,特征提取器负责两类数据公共特征的提取,而领域判别器则采用对抗机制判别所提取特征来自于哪类输入数据,经过迭代训练,领域判别器最终难以区分所提取的特征来源,此时,网络模型已充分挖掘到合成数据和实际地震数据之间的公共特征,并可以泛化到实际地震数据实现断层精确识别。经过荷兰北海F3和国内西部深层实际资料断层识别的应用,表明所提方法相对于常规深度学习方法提高了断层识别的精度,同时验证了所提方法的实用性和可行性。

       

      Abstract: Deep learning-based fault detection methods typically rely on pre-interpreted fault labels for network training. However, practical applications face significant challenges due to the labor-intensive nature of manual fault interpretation and insufficient labels for the effective training of a deep learning model. The utilization of synthetic labels is an alternative. However, structural and lithologic variations in different regions lead to notable discrepancies between synthetic and field seismic data, which severely limit the generalization of a synthetic data-trained model for fault identification. To address these limitations, this study proposes a transfer learning approach employing a domain-adaptive neural network for cross-domain fault detection. A domain discriminator is designed in the U-Net architecture to simultaneously process both synthetic and real seismic data. A feature extractor is designed to learn domain-invariant representations from both data types, while the domain discriminator engages in adversarial training to distinguish the data source of extracted features. Through iterative optimization, the network eventually achieves domain confusion when the discriminator cannot reliably identify the origin of input features. At this equilibrium state, the model effectively captures the shared characteristics between synthetic and real seismic data, enabling the robust generalization to field data for accurate fault detection. Comparative experiments using seismic data from Netherlands North Sea F3 block and western China demonstrate the enhanced accuracy of our method compared to conventional deep learning approaches and its good performance of addressing domain shifts in seismic interpretation.

       

    /

    返回文章
    返回