高级检索

    基于MCNN-ABiGRU-AFFMHA模型的储层参数预测研究

    Research to predict reservoir parameters based on the MCNN-ABiGRU-AFFMHA model

    • 摘要: 在油气田勘探开发中,储层参数的精准预测对油气藏评价与开发决策至关重要。现有深度学习方法在时空特征协同建模方面存在局限性:传统卷积神经网络难以有效捕捉测井数据的多尺度空间关联;循环神经网络对长序列时序特征的建模能力不足,导致模型无法充分揭示时空特征与储层参数间的复杂非线性关系。为此,提出了一种基于MCNN-ABiGRU-AFFMHA模型的储层参数预测模型,该模型采用双分支并行架构:一方面通过多尺度卷积(MCNN)提取1×1至4×1核的多层次空间特征,以解决储层非均质性导致的尺度敏感问题;另一方面采用注意力机制增强的双向门控循环单元网络(ABiGRU)强化测井曲线的时序特征提取能力。因此,设计了自适应特征融合多头注意力模块(AFFMHA)以实现时空特征的动态优化融合。基于挪威北海Volve油田A,B,C 3口井的实验结果表明:在同井孔预测任务中,模型在A井(RMSE=0.00608,MAE=0.00504,R2=0.910)和B井(RMSE=0.00549,MAE=0.00434,R2=0.905)均表现出色;消融实验证实MCNN,ABiGRU,AFFMHA模块分别贡献15.74%、9.93%和26.96%的性能提升。跨井测试结果(RMSE=0.0226,MAE=0.0156,R2=0.931)进一步验证了模型的强泛化能力,为复杂储层参数预测提供了有效的时空特征协同建模方法。

       

      Abstract: Accurate prediction of reservoir parameters plays a crucial role in hydrocarbon reservoir evaluation and development decision-making during oil and gas field development. Existing deep learning methods have limitations in spatiotemporal feature collaborative modeling: Conventional convolutional neural networks (CNNs) struggle to capture the multi-scale spatial correlations in well-logging data, recurrent neural networks (RNNs) demonstrate insufficient efficiency in modelling long-sequence temporal features, hindering the model’s ability to fully uncover the complex nonlinear relationships between spatiotemporal features and reservoir parameters. To address these challenges, a reservoir parameter prediction model based on MCNN-ABiGRU-AFFMHA was proposed, featuring a dual-branch parallel architecture. The first branch employed multi-scale CNNs (MCNNs) with kernel sizes ranging from 1 × 1 to 4 × 1 to extract hierarchical spatial features, effectively addressing scale sensitivity caused by reservoir heterogeneity. The second branch integrated an attention mechanism-enhanced bidirectional gated recurrent unit network (ABiGRU) to enhance the extraction of temporal dependencies in well-logging curves. Accordingly, an adaptive feature fusion multi-head attention module (AFFMHA) was designed to dynamically optimize the fusion of spatiotemporal features. Experimental results on data from three wells (A, B, and C) in the Volve Field, Norwegian North Sea, demonstrate that in intra-well prediction tasks, the model achieves outstanding results in Well A (RMSE = 0.006 08, MAE = 0.005 04, R2 = 0.910) and Well B (RMSE = 0.005 49, MAE = 0.004 34, R2 = 0.905). Ablation studies confirm that the MCNN, ABiGRU, and AFFMHA modules contribute 15.74%, 9.93%, and 26.96% performance improvements, respectively. Furthermore, cross-well testing results (RMSE = 0.022 6, MAE = 0.015 6, R2 = 0.931) validates the model’s strong generalization capability, providing an effective spatiotemporal feature collaborative modeling approach for complex reservoir parameter prediction.

       

    /

    返回文章
    返回