高级检索

    基于多尺度分解与卷积稀疏表示的地震属性融合方法

    Seismic attribute fusion based on multi-scale decomposition and convolutional sparse representation

    • 摘要: 地震多属性分析技术能够从多个维度表征地下构造特征。常规多属性融合方法多采用点对点的融合方式。然而,地震属性所反映的地下构造关系是连续的,点对点的融合方法难以兼顾地下构造的全局特征。为此,提出一种基于多尺度分解与卷积稀疏表示的多尺度地震属性融合方法。首先,利用多个对目的层敏感的地震属性,构建多尺度的高斯−拉普拉斯金字塔模型,以在频率域实现多尺度表示;然后,在利用卷积稀疏表示方法融合细节层的同时,采用梯度融合算法融合基层;最后,对融合后的高斯−拉普拉斯金字塔进行逆变换,进而得到融合地震属性。该方法在保护高频细节信息的同时,将各个单一属性分解至多尺度空间频带,从多尺度、全局视角对地质目标进行表征。采用逆冲推覆构造模型对该方法开展测试,结果表明,该方法能够融合各输入数据的全局特征,在河道边界刻画以及储层展布特征表征方面展现出明显优势,为准确刻画储层展布提供了关键支撑。将该方法应用于某地区滩体的储层刻画,其多属性融合结果与实钻井数据高度吻合,符合实际地质认识,取得了良好的应用效果。

       

      Abstract: Seismic multi-attribute analysis enables a multi-dimensional interpretation of subsurface structures. However, conventional point-to-point fusion methods often fail to capture their continuous nature. To address this limitation, we propose a novel multi-scale fusion method based on multi-scale decomposition and convolutional sparse representation. First, a Gaussian-Laplacian pyramid is constructed in the frequency domain to achieve multi-scale representation of the selected seismic attributes with high sensitivity to the target layer. Then, the detail layers are fused using convolutional sparse representation, while the base layer is integrated via a gradient-based fusion algorithm. Finally, the fused Gaussian-Laplacian pyramid undergoes inverse transformation to reconstruct the integrated attribute. While preserving high-frequency details, this approach effectively decomposes individual attributes across multi-scale spatial-frequency bands. It enables a comprehensive characterization of geological targets from both multi-scale and global perspectives, and plays a key role in accurately depicting reservoir distribution. Tests on an overthrust structural model demonstrate its successful integration of global features across input data and its distinct advantages in delineating channel boundaries and reservoir distribution. A field data application to a beach reservoir yields a multi-attribute fusion outcome highly consistent with drilling results. The outcome aligns well with established geological understanding and demonstrates promising application performance.

       

    /

    返回文章
    返回