高级检索

    高精度全波形反演提升海域复杂构造成像质量

    High-precision full waveform inversion for enhanced imaging of complex marine structures

    • 摘要: 复杂构造的强横向和纵向速度变化给海域地震勘探建模和成像带来了巨大挑战。为了探索如何利用宽方位和长偏移距地震数据驱动全波形反演(full waveform inversion,FWI)技术应对这一挑战,开展了全波形反演应用研究。首先,分析了全波形反演相对于射线层析对复杂地质体刻画能力的优势,探讨了三维全波形反演算法提升计算效率并确保反演效果需要考虑的部分关键因素。然后,以渤海油田某宽方位和长偏移距海底电缆(ocean bottom cable, OBC)采集工区为例,从全波形反演输入数据准备、多尺度反演策略以及效果质控等方面进行系统分析。结果表明,利用全波形反演技术得到的高精度速度体可直接识别主要断裂、火成岩和气云等复杂地质构造的分布情况,相对于基于射线层析的速度模型,深度偏移成像质量大幅提升。

       

      Abstract: The strong lateral and vertical velocity variations in complex structures pose significant challenges to velocity model building and seismic imaging in marine exploration. To address these challenges, this study investigates the application of full-waveform inversion (FWI) driven by wide-azimuth long-offset seismic data. We examine the advantages of FWI over ray-based tomography in resolving complex geological structures, and also discuss some key factors in the 3D FWI algorithm that are critical for improving computational efficiency without compromising imaging quality. We present a case study from Bohai Oilfield, which utilizes wide-azimuth long-offset ocean-bottom-cable data for a systematic analysis involving data preparation, implementation of multi-scale inversion strategies, and quality control. The results demonstrate that the high-precision FWI velocity model allows direct interpretation of major structures like fractures, igneous rocks, and gas clouds, and also yields depth migration results with substantially improved imaging quality over those from ray tomography-derived velocity models.

       

    /

    返回文章
    返回