高级检索

    基于Swin-Unet及掩码技术的地震相预测方法

    Seismic facies interpretation based on Swin-Unet and masking technique

    • 摘要: 地震相的识别与刻画在油气勘探领域具有十分重要的意义,深度学习可以提高地震相的刻画精度并显著减少人工解释的工作量。然而,对于三维地震数据体,目前主流深度学习方法采用有限数量人工解释的二维主干剖面作为标签,而主干剖面一般仅包括Inline和Crossline两个方向,因此训练得到的神经网络模型只能提取这两个方向的特征,导致缺乏人工解释标签位置的地震相分类精度较低,即神经网络模型在整个三维数据体上的泛化能力较弱。为此,引入掩码技术,提出基于Swin-Unet及掩码技术的地震相预测方法。掩码器用于网络输出端对没有标签的地震数据进行相应的掩码处理,以防止无效梯度的反向传播,从而使得深度学习算法不仅可以提取Inline和Crossline方向的特征,而且可以提取其他任意方向的特征,即实现对全局空间特征的提取,从而提高整体地震相的预测精度。Swin-Unet是将U型网络和Transformer有机结合且被广泛认可的网络结构,可以将Transformer结构中的自注意力机制与U-Net处理细粒度信息的能力有机结合,更好地捕捉图像中的长距离依赖关系。利用F3及Parihaka数据集对方法进行了测试,测试结果验证了方法的效果。

       

      Abstract: Seismic facies prediction plays an important role in oil and gas exploration. Deep learning (DL) can improve the accuracy of seismic facies interpretation and meanwhile greatly reduce the workload of manual interpretation. Mainstream DL methods rely on a limited number of manually interpreted sections as labels, typically along Inlines and Crosslines of 3D seismic data. As a result, the trained neural network only extracts features along these two directions, leading to low-accuracy facies classification in the regions without manual interpretation labels. To improve DL-model generalization across the entire data volume, this paper incorporates a masking technique and proposes a facies prediction method based on Swin-Unet and masking to address data augmentation. A masker is employed at the network output to mask unlabeled seismic data and thus prevent the backpropagation of invalid gradients. This enables the DL algorithm to extract features in any direction, not limited to the Inline and Crossline directions, thereby realizing global spatial feature extraction to improve the overall accuracy of seismic facies prediction. Swin-Unet is a widely recognized network architecture that integrates U-net with Transformer. It combines the self-attention mechanism of Transformer with the capability of U-net for fine-grained information processing to capture long-range dependencies in an image. The tests using F3 and Parihaka datasets demonstrate the advantages of our approach over traditional DL methods.

       

    /

    返回文章
    返回