高级检索

    单船双源滑动扫描采集混叠干扰压制

    Aliasing interference suppression in single-vessel dual-source slip-sweep acquisition

    • 摘要: 针对海洋地震勘探中单船双源滑动扫描采集常见的混叠干扰问题,分析了混叠干扰的空间特性和时间分布规律,发现该类干扰在共检波点域和共炮点域具有较强的相干性,而在共偏移距域和共中心点域表现为弱相干性和较低的随机性,此外,该类干扰在近道具有强能量、宽频带的特征。在此基础上,构建了一种融合线性预测建模、分频能量约束近道强能量压制以及α-trimmed矢量中值滤波的多阶段优化压制策略,充分利用混叠干扰在不同域中干扰特征的异质性,实现了对复杂混叠干扰的精确建模与分频自适应压制,提高了混叠干扰的压制效果和有效信号的保真度,在兼顾了数据处理效率的同时,弥补了传统方法压制非随机混叠干扰的不足。实际应用结果表明,该方法可显著降低混叠干扰对地震数据质量的影响,有效保护有效信号的频谱特性,提高数据信噪比,为后续地震成像和解释提供可靠的数据基础。研究成果对于提高多源混叠采集模式下的地震数据质量与成像精度具有重要意义。

       

      Abstract: This study addresses the common problem of aliasing interference in marine seismic exploration using single-vessel dual-source slip-sweep acquisition. Through the analysis of its spatial characteristics and temporal distribution patterns, we identify its strong coherence in common-receiver and common-shot gathers, weak coherence with low randomness in common-offset and common-midpoint gathers, and strong energy with broad band in near-offset gathers. Based on these findings, we develop a multi-stage optimized suppression strategy, which integrates linear predictive modeling, frequency-division energy-constrained near-offset strong energy suppression, and α-trimmed vector median filtering. This method leverages the heterogeneity of aliasing interference across different domains to enable directional modeling and frequency-adaptive suppression of complex aliasing artifacts, thus significantly improving interference suppression and signal preservation. In addition, it is superior to conventional methods in handling non-random aliases. Field applications demonstrate that the proposed method effectively mitigates aliasing-induced artifacts in seismic data, preserves essential signal spectra, and enhances overall signal-to-noise ratio. The processed data establish a robust foundation for subsequent seismic imaging and interpretation. This research provides substantial practical value for improving marine seismic data quality and imaging precision.

       

    /

    返回文章
    返回