高级检索

    基于物理信息约束的智能化面波压制技术

    Intelligent surface wave suppression technology based on physical information constraints

    • 摘要: 面波噪声压制效果会影响地震数据的成像质量和地震资料的解释精度。针对纯数据驱动的深度学习架构在智能化噪声压制中存在噪声识别精度不足和实际数据应用泛化能力有限的问题,提出了一种基于物理信息约束的智能化面波噪声压制技术。首先,构建一种双通道输入的UNET网络,将去噪前时空域数据及其对应的频率波数域数据作为输入,以对应的时空域噪声数据作为输出,建立输入输出之间的映射关系,利用双域联合的数据输入提高网络识别噪声的精度。其次,根据面波的规则噪声特性,在损失函数中引入结构相似性正则化算子,以增强网络对噪声的识别能力。然后,考虑不同工区面波的物理特性差异,进一步引入噪声频率和视速度分布作为约束条件,对输出数据进行优化,从而获得高精度的预测噪声。最后,采用自适应相减算法去除预测的噪声,得到最终的去噪数据。利用实际数据验证了所提出的智能化面波压制技术的去噪精度和泛化能力。

       

      Abstract: Surface wave suppression directly influences the imaging quality and interpretation accuracy of seismic data. In view of the limited identification accuracy and generalization of intelligent noise suppression based on a completely data-driven deep learning architecture, a physically constrained surface wave suppression technique is proposed. To enhance noise recognition, a UNET architecture with dual-channel input, jointly from the time-space domain and corresponding frequency-wavenumber domain before denoising, is constructed to establish the mapping relationship between input data and output noise data in the time-space domain. Based on the characteristics of surface waves as regular noises, structural similarity regularization operators are introduced into the loss function to further enhance the network's ability to recognize noises. To address different physical characteristics of surface waves in different work areas, noise frequency and apparent velocity distributions are used as the constraints for further processing of output noise data to obtain higher-precision noise predictions, which will be subtracted from input data using an adaptive subtraction algorithm to obtain final denoised data. The testing on several field data sets shows superior denoising accuracy and generalization capability of the proposed algorithm.

       

    /

    返回文章
    返回