高级检索

    基于PINN旅行时计算的TTI介质克希霍夫积分偏移

    Kirchhoff integral migration for TTI media with travel-time calculated based on PINN

    • 摘要: 随着油气勘探目标的构造复杂化,常规各向同性克希霍夫积分偏移成像算法已难以满足复杂构造区域的高精度成像要求,倾斜横向各向同性(tilted transversely isotropic, TTI)介质克希霍夫积分偏移在实际生产中得到广泛应用。针对常规TTI介质克希霍夫积分偏移存在的旅行时计算精度和效率低下等问题进行了研究,将基于物理信息驱动的神经网络(physics-informed neural network, PINN)的TTI介质旅行时计算方法引入克希霍夫积分偏移成像的旅行时求取中,实现了TTI介质的高精度克希霍夫积分偏移成像。模型实验和实际数据处理结果均显示,相比于传统有限差分算法,基于PINN的TTI介质旅行时求取算法能够显著提高旅行时计算精度和计算效率,在此基础上,可实现高精度TTI介质克希霍夫积分偏移成像。

       

      Abstract: With the development of oil and gas exploration, conventional isotropic Kirchhoff integral migration algorithm can no longer meet the requirements of high-precision imaging in complex structural areas. As a result, tilted transversely isotropic (TTI) media Kirchhoff integral migration has been widely adopted in industrial applications. To address the issues of low accuracy and computational inefficiency in traditional TTI media travel-time calculations, a travel-time computation method for TTI media based on Physics-Informed Neural Networks (PINN) is introduced into the Kirchhoff integral migration framework, enabling high-precision migration imaging in TTI media. Both model experiments and field data processing demonstrate that, compared to conventional finite-difference algorithms, the PINN-based approach significantly improves both the accuracy and efficiency of travel-time calculations, thereby enabling high quality TTI media Kirchhoff integral migration imaging.

       

    /

    返回文章
    返回