高级检索

    基于MSIP GAN的地震数据随机噪声压制方法

    Random noise suppression method of seismic data based on MSIP GAN

    • 摘要: 在地震勘探中,采集得到的地震数据通常会受到严重的随机噪声污染,对后续的数据处理和解释产生负面影响。常规的地震数据噪声压制方法在压制噪声时无法有效分离信号和噪声,导致数据图像细节信息丢失、产生伪纹理等问题。为提高地震图像质量,提出了基于多尺度信息感知生成对抗网络(MSIP GAN)的地震数据随机噪声压制方法。首先,设计了多尺度信息感知生成网络来去除地震数据中的随机噪声,降噪网络以传统的深度卷积神经网络为基础框架,结合并行多尺度模块、多通道信息融合模块、一致性正则化模块来改善纹理结构的准确性并保留更多细节信息;其次,构建了判别网络的判别标签数据并将其与生成网络的生成图像相结合来辅助生成网络的训练;最后,设计了一种复合损失函数指导生成网络,提升生成网络恢复图像细节信息的能力。将该方法应用于大庆油田实际工区的地震数据处理,处理结果表明,与目前的主流模型和工业软件相比,其噪声压制效果提升显著;将该方法应用于荷兰近海的海底F3地震数据的噪声压制,结果表明该方法具有较强的泛化能力。

       

      Abstract: In seismic survey, seismic data are often polluted by serious random noise, which has a negative impact on subsequent processing and interpretation. The existing noise suppression methods of seismic data cannot effectively separate signals and noise, leading to the problems such as loss of image details and the introduction of false textures. In order to improve the quality of seismic images, a method for suppressing random noise of seismic data based on multi-scale information perception generative adversarial network (MSIP GAN) is proposed. Firstly, a multi-scale information perception generative network is designed to remove random noise from seismic data. The denoising network is based on the traditional deep convolutional neural network(CNN), and combines parallel multi-scale module, multi-channel information fusion module and consistency regularization module to improve the accuracy of texture structure and retain more details. Secondly, the label data of the discriminative network and the images of the generative network are constructed to assist in training the generative network. Finally, a composite loss function is designed to guide the generative network, thus improving the ability of the generative network to recover image details. The experiments on actual data from the Daqing Oilfield demonstrate that the proposed method achieves significantly enhanced noise suppression effectiveness compared to existing mainstream models and industrial software when removing noise of varying intensities. Furthermore, the experiments on the data from the offshore F3 block in the Netherlands reveal that this method exhibits a robust generalization capability.

       

    /

    返回文章
    返回