高级检索

    基于物理信息神经网络的地震波阻抗反演方法综述

    A review of seismic impedance inversion methods based on physics-informed neural network

    • 摘要: 地震波阻抗反演是地震勘探领域的重要研究方向之一,其目标是利用地震数据定量预测地下介质的波阻抗。近年来,随着人工智能技术的快速发展,国内外学者提出了多种基于深度学习的地震波阻抗反演方法。这些方法将物理定律、经验公式及专家先验知识等地球物理信息融入深度网络,从不同角度降低反演问题的多解性,并增强其物理可解释性。对这些方法进行了研究和总结,从3个角度引入地球物理信息,分别为:①设计嵌入地球物理知识的网络结构;②施加数据约束;③构建多目标损失函数。其中,嵌入地球物理知识的网络结构包括:正演物理模型模块、反射系数反演模型模块、地震数据的时空特征表征模块和人工合成与实际数据的域适应模块。数据约束包括:通过人工合成多样化的样本训练深度网络和量化先验知识输入网络。多目标损失函数中引入基于地球物理信息的正则化项,包括:闭环损失、生成对抗损失、动态时间规整损失、空间构造损失和不确定性损失。上述3种策略可以从不同角度降低反演的多解性,提升反演的可靠性。最后,对基于深度学习的地震波阻抗反演方法做出展望:①利用多模态大模型的强大理解能力和知识推理能力,采用多模态数据提升反演模型的泛化性;②利用多模型拟合并结合物理信息神经网络,将反演建模的“一对多”问题转化为每个地震相分割单元内的“一对一”问题,降低地震波阻抗反演问题的多解性。

       

      Abstract: Seismic impedance inversion is one of the key research subjects in the field of seismic exploration. Its basic goal is to quantitatively predict the wave impedance of underground medium from the seismic data. In recent years, with the rapid advancement of artificial intelligence technology, many scholars have proposed a variety of deep leaning (DL) based seismic impedance inversion methods. These methods embed geophysical information, such as physical laws, empirical formulas, and prior expert knowledge, into deep networks from different perspectives, effectively reducing the multi-solution and enhancing the physical interpretability of the inversion problem. This paper presents a review of these methods, which incorporate geophysical information by three strategies: ① designing network architectures embedded with geophysical knowledge; ② applying data constraints; ③ constructing multi-objective loss functions. The network architectures embedded with geophysical knowledge include: a forward physical model module, a reflection coefficient inversion model module, a seismic data spatiotemporal feature representation module, and a synthetic-to-real domain adaptation module. Data constraints include: generating diverse synthetic samples to train the deep network, and quantifying prior knowledge as inputs to the network. Multi-objective loss functions encompass physics-informed regularization terms, including closed-loop loss, generative adversarial loss, dynamic time warping (DTW) loss, spatial structure loss, and uncertainty loss. These strategies can reduce the multi-solution and enhance the reliability of the inversion problem from different perspectives. Finally, this paper provides two prospects for the DL-based seismic impedance inversion method: ① multi-modal large models with robust comprehension and knowledge reasoning capabilities can be leveraged together with multi-modal data to enhance the generalization of the inversion model; ② the multi-model fitting method can be combined with physics-informed neural network (PINN) to transform the "one-to-many" problem of inversion modeling into a "one-to-one" problem within each seismic facies segment, thereby reducing the multi-solution of the seismic impedance inversion.

       

    /

    返回文章
    返回