高级检索

    基于Dix引导的智能速度建模方法

    A Dix-guided intelligent velocity modeling method

    • 摘要: 速度建模是地球物理勘探中的重点和难点之一。现有的人工智能方法虽然能高效建模,但往往缺少领域知识引导,没有考虑成像结果与速度模型的结构相似性,导致地质结构刻画不准确。为此,提出基于Dix引导的智能速度建模方法,在时间域结合成像剖面与层速度的结构相似性以及Dix物理关系,优化神经网络建模过程。首先,以共中心点(CMP)道集和速度谱作为输入,提取反映相对大小和变化趋势的速度特征。其次,再输入叠加剖面,通过均方根(RMS)速度标签和Dix激活函数,引导速度特征转换成与叠加剖面结构相似的层速度(隐藏层)。测试结果表明,Dix激活函数能够引导网络利用地质结构优化速度模型,学习形态上的简单映射关系,提升泛化能力。预测的速度模型能够准确刻画地层边界且具有良好横向连续性。

       

      Abstract: Velocity modeling is a key challenge in geophysical exploration. Although artificial intelligence methods enable efficient model building, they often lack domain-specific guidance and fail to consider the structural similarity between the migration image and velocity model, resulting in inaccurate geological structure interpretation. To address this limitation, we propose a Dix-guided intelligent velocity modeling method, which uses the structural similarity between imaging profiles and interval velocities as well as the Dix relation to optimize the neural network-based modeling process. Specifically, common midpoint(CMP) gathers and velocity spectra are used as inputs to extract features that reflect relative velocity magnitude and variation trends. Then, the stacked profile is introduced to guide the network to convert there features into interval velocities (hidden layers), which are structurally consistent with the profile. This process is constrained by root-mean-square(RMS) velocity lables and a newly designed Dix activation function. Experimental results demonstrate that the Dix activation function effectively guides the network to incorporate geological structures into velocity modeling, enabling it to learn simple morphological structural mappings and enhancing the model's generalization capability. The predicted velocity model accurately delineates stratigraphic boundaries and exhibits strong lateral continuity.

       

    /

    返回文章
    返回